Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Wound Repair Regen ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602090

RESUMO

An argon-based low-temperature plasma jet (LTPJ) was used to treat chronically infected wounds in Staphylococcus aureus-laden mice. Based on physicochemical property analysis and in vitro antibacterial experiments, the effects of plasma parameters on the reactive nitrogen and oxygen species (RNOS) content and antibacterial capacity were determined, and the optimal treatment parameters were determined to be 4 standard litre per minute and 35 W. Additionally, the plasma-treated activation solution had a bactericidal effect. Although RNOS are related to the antimicrobial effect of plasma, excess RNOS may be detrimental to wound remodelling. In vivo studies demonstrated that medium-dose LTPJ promoted MMP-9 expression and inhibited bacterial growth during the early stages of healing. Moreover, LTPJ increased collagen deposition, reduced inflammation, and restored blood vessel density and TGF-ß levels to normal in the later stages of wound healing. Therefore, when treating chronically infected wounds with LTPJ, selecting the medium dose of plasma is more advantageous for wound recovery. Overall, our study demonstrated that low-temperature plasma jets may be a potential tool for the treatment of chronically infected wounds.

2.
Clin. transl. oncol. (Print) ; 26(1): 190-203, jan. 2024.
Artigo em Inglês | IBECS | ID: ibc-229157

RESUMO

Purpose This study intends to investigate the possible molecular mechanism of immune response and tumorigenesis in ovarian cancer cells, mediated by sirtuin 1 (SIRT1)-containing extracellular vesicles (EVs) derived from cancer-associated adipocytes (CAAs) (CAA-EVs). Methods Differentially expressed genes in EVs from CAAs were screened by RNA transcriptome sequencing, and the downstream pathway was predicted in silico. The binding between SIRT1 and CD24 was investigated by luciferase activity and ChIP-PCR assays. EVs were extracted from human ovarian cancer tissue-isolated CAAs, and the internalization of CCA-EVs by ovarian cancer cells was characterized. The ovarian cancer cell line was injected into mice to establish an animal model. Flow cytometry was performed to analyze the proportions of M1 and M2 macrophages, CD8+ T, T-reg, and CD4+ T cells. TUNEL staining was used to detect cell apoptosis in the mouse tumor tissues. ELISA detection was performed on immune-related factors in the serum of mice. Results CAA-EVs could deliver SIRT1 to ovarian cancer cells, thereby affecting the immune response of ovarian cancer cells in vitro and promoting tumorigenesis in vivo. SIRT1 could transcriptionally activate the expression of CD24, and CD24 could up-regulate Siglec-10 expression. CAA-EVs-SIRT1 activated the CD24/Siglec-10 axis and promoted CD8+ T cell apoptosis, thereby promoting tumorigenesis in mice. Conclusion CAA-EVs-mediated transfer of SIRT1 regulates the CD24/Siglec-10 axis to curb immune response and promote tumorigenesis of ovarian cancer cells (AU)


Assuntos
Humanos , Feminino , Vesículas Extracelulares , MicroRNAs/metabolismo , Neoplasias Ovarianas/patologia , Ácidos Siálicos , Adipócitos/metabolismo , Adipócitos/patologia , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Imunidade , Lecitinas/metabolismo
3.
Clin Transl Oncol ; 26(1): 190-203, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37311988

RESUMO

PURPOSE: This study intends to investigate the possible molecular mechanism of immune response and tumorigenesis in ovarian cancer cells, mediated by sirtuin 1 (SIRT1)-containing extracellular vesicles (EVs) derived from cancer-associated adipocytes (CAAs) (CAA-EVs). METHODS: Differentially expressed genes in EVs from CAAs were screened by RNA transcriptome sequencing, and the downstream pathway was predicted in silico. The binding between SIRT1 and CD24 was investigated by luciferase activity and ChIP-PCR assays. EVs were extracted from human ovarian cancer tissue-isolated CAAs, and the internalization of CCA-EVs by ovarian cancer cells was characterized. The ovarian cancer cell line was injected into mice to establish an animal model. Flow cytometry was performed to analyze the proportions of M1 and M2 macrophages, CD8+ T, T-reg, and CD4+ T cells. TUNEL staining was used to detect cell apoptosis in the mouse tumor tissues. ELISA detection was performed on immune-related factors in the serum of mice. RESULTS: CAA-EVs could deliver SIRT1 to ovarian cancer cells, thereby affecting the immune response of ovarian cancer cells in vitro and promoting tumorigenesis in vivo. SIRT1 could transcriptionally activate the expression of CD24, and CD24 could up-regulate Siglec-10 expression. CAA-EVs-SIRT1 activated the CD24/Siglec-10 axis and promoted CD8+ T cell apoptosis, thereby promoting tumorigenesis in mice. CONCLUSION: CAA-EVs-mediated transfer of SIRT1 regulates the CD24/Siglec-10 axis to curb immune response and promote tumorigenesis of ovarian cancer cells.


Assuntos
Vesículas Extracelulares , MicroRNAs , Neoplasias Ovarianas , Animais , Feminino , Humanos , Camundongos , Adipócitos/metabolismo , Adipócitos/patologia , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Imunidade , MicroRNAs/metabolismo , Neoplasias Ovarianas/patologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Sirtuína 1/metabolismo
4.
Clin. transl. oncol. (Print) ; 25(11): 3174-3187, 11 nov. 2023.
Artigo em Inglês | IBECS | ID: ibc-226842

RESUMO

Introduction In the present study, we sought to clarify the role of LINC01119 delivered by cancer-associated adipocytes (CAAs)-derived exosomes (CAA-Exo) and its mechanistic actions in ovarian cancer (OC). Materials and methods The expression of LINC01119 was determined in OC, and the relationship between LINC01119 expression and the prognosis of OC patients was analyzed. Besides, 3D co-culture cell models were constructed using green fluorescent protein-labeled OC cells and red fluorescent protein-labeled mature adipocytes. Mature adipocytes were co-cultured with OC cells to induce CAA. Macrophages treated with CAA-Exo were co-cultured with SKOV3 cells following ectopic expression and depletion experiments of LINC01119 and SOCS5 to detect M2 polarization of macrophages, PD-L1 level, proliferation of CD3+ T cells, and cytotoxicity of T cells to SKOV3 cells. Results LINC01119 was elevated in the plasma Exo of OC patients, which was related to shorter overall survival in OC patients. LINC01119 expression was increased in CAA-Exo, which could upregulate SOCS5 in OC. Finally, CAA-Exo carrying LINC01119 induced M2 polarization of macrophages to promote immune escape in OC, as evidenced by inhibited CD3+ T cell proliferation, increased PD-L1 level, and attenuated T cell toxicity to SKOV3 cells. Conclusion In conclusion, the key findings of the current study demonstrated the promoting effects of CAA-Exo containing LINC01119 mediating SOCS5 on M2 polarization of macrophages and immune escape in OC (AU)


Assuntos
Humanos , Feminino , Exossomos/metabolismo , MicroRNAs/metabolismo , Neoplasias Ovarianas/metabolismo , Adipócitos/metabolismo , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura , Macrófagos/metabolismo , Transdução de Sinais
5.
Biomed Rep ; 19(4): 69, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37719680

RESUMO

Breast cancer (BC) has become a threat to women's health. In addition, patients with triple-negative BC (TNBC) have the worst prognosis among all patients with BC. Furthermore, long non-coding RNA ABHD11-AS1 is aberrantly highly expressed in TNBC, suggesting that RNA ABHD11-AS1 may serve as an important role in the progression of TNBC. However, the detailed function of ABHD11-AS1 in TNBC remains largely unknown. The levels of ABHD11-AS1 in MDA-MB-231 cells were assessed by reverse transcription-quantitative PCR. To investigate the effect of ABHD11-AS1 on the progression of TNBC, a xenograft animal model was established. Knockdown of ABHD11-AS1 inhibited the epithelial-mesenchymal transition and migration of TNBC cells. In addition, ABHD11-AS1 promoted the viability and migration of TNBC cells by upregulating microRNA (miR)-199a-5p. Furthermore, knockdown of ABHD11-AS1 suppressed TNBC tumor growth in vivo by upregulating miR-199a-5p. In conclusion, knockdown of ABHD11-AS1 suppressed the progression of TNBC via upregulation of miR-199a-5p. The data of the present study may provide novel directions and a theoretical basis for TNBC treatment.

6.
Clin Transl Oncol ; 25(11): 3174-3187, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37142874

RESUMO

INTRODUCTION: In the present study, we sought to clarify the role of LINC01119 delivered by cancer-associated adipocytes (CAAs)-derived exosomes (CAA-Exo) and its mechanistic actions in ovarian cancer (OC). MATERIALS AND METHODS: The expression of LINC01119 was determined in OC, and the relationship between LINC01119 expression and the prognosis of OC patients was analyzed. Besides, 3D co-culture cell models were constructed using green fluorescent protein-labeled OC cells and red fluorescent protein-labeled mature adipocytes. Mature adipocytes were co-cultured with OC cells to induce CAA. Macrophages treated with CAA-Exo were co-cultured with SKOV3 cells following ectopic expression and depletion experiments of LINC01119 and SOCS5 to detect M2 polarization of macrophages, PD-L1 level, proliferation of CD3+ T cells, and cytotoxicity of T cells to SKOV3 cells. RESULTS: LINC01119 was elevated in the plasma Exo of OC patients, which was related to shorter overall survival in OC patients. LINC01119 expression was increased in CAA-Exo, which could upregulate SOCS5 in OC. Finally, CAA-Exo carrying LINC01119 induced M2 polarization of macrophages to promote immune escape in OC, as evidenced by inhibited CD3+ T cell proliferation, increased PD-L1 level, and attenuated T cell toxicity to SKOV3 cells. CONCLUSION: In conclusion, the key findings of the current study demonstrated the promoting effects of CAA-Exo containing LINC01119 mediating SOCS5 on M2 polarization of macrophages and immune escape in OC.


Assuntos
Exossomos , MicroRNAs , Neoplasias Ovarianas , Humanos , Feminino , Técnicas de Cocultura , Antígeno B7-H1/metabolismo , Exossomos/metabolismo , Transdução de Sinais , Macrófagos/metabolismo , Adipócitos/metabolismo , MicroRNAs/metabolismo , Linhagem Celular Tumoral
7.
Artigo em Inglês | MEDLINE | ID: mdl-35832525

RESUMO

Background: Bladder cancer is a common malignant tumor of the urinary system in the clinic. It has multiple lesions, easy recurrence, easy metastasis, poor prognosis, and high mortality. Objective: The aim of this study is to investigate the impact of laparoscopic radical cystectomy (LRC) and open radical cystectomy (ORC) on the surgical outcome, complications, and prognosis of elderly patients with bladder cancer. Materials and Methods: One hundred elderly bladder cancer patients who underwent surgery in our hospital from June 2019 to June 2021 were selected for the retrospective study and were divided into 50 cases each in the ORC group and the LRC group according to the different surgical methods. The ORC group was treated with ORC, and the LRC group implemented LRC treatment. The differences in surgery, immune function, recent clinical outcomes, and complications between the two groups were observed and compared. Results: The mean operative time, mean intraoperative bleeding, intraoperative and postoperative transfusion rate, and transfusion volume of patients in the LRC group were statistically significant when compared to the ORC group. The differences in the meantime to resume eating, time to get out of bed, mean number of days in hospital after surgery, and the amount of postoperative numbing analgesics used by patients in the LRC group after surgery were statistically significant compared to the ORC group (P < 0.05). There was no statistically significant difference in the comparison of immune function between the two groups before surgery (P > 0.05), while the comparison of CD8+ and B cells 1 week after surgery of the LRC group was significantly better than that of the ORC group (P < 0.05), and the operation time of the LRC group was longer than that of the ORC group (P < 0.05). Statistical analysis of postoperative complications showed that the overall incidence of postoperative complications in the LRC group was significantly lower than that in the ORC group (16.67% vs. 46.67%) (P < 0.05). Conclusion: LRC has less surgical trauma and intraoperative bleeding, faster postoperative recovery, and fewer postoperative complications, providing some reference for clinical surgery for elderly bladder cancer patients.

8.
Cell Biochem Funct ; 40(4): 379-390, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35411950

RESUMO

Activated B-cell-like (ABC)-diffuse large B-cell lymphoma (ABC-DLBCL) is a common subtype of non-Hodgkin's lymphoma with poor prognosis. The survival of ABC-DLBCL relies on constitutive activation of BCR signaling, but the underlying molecular mechanism is not fully addressed. By mining The Cancer Genome Atlas database, we found that the expression of ubiquitin-specific protease 7 (USP7) is significantly elevated in three cancer types including DLBCL. Interestingly, unlike germinal center B-cell-like (GCB)-DLBCL, ABC-DLBCL shows upregulated expression of USP7. Inhibiting the enzymatic activity of USP7 (P22077) has a drastic effect on ABC-DLBCL, but not GCB-DLBCL cells. Compared to GCB-DLBCL, ABC-DLBCL cells show transcriptional upregulation of multiple components of BCR-signaling. USP7 inhibition significantly reduces the expression of upregulated components of BCR signaling. Mechanistically, USP7 inhibition greatly reduces the methylation of histone 3 on lysine 4 (H3K4me2), which is an epigenetic marker for active enhancers. USP7 inhibition greatly reduces the protein level of WDR5 and MLL2, key components of lysine-specific methyltransferase complex (complex of proteins associated with Set1 [COMPASS]). In ABC-DLBCL cells, USP7 stabilizes WDR5 and MLL2. In patients, the expression of USP7 is significantly associated with components of BCR signaling (LYN, SYK, BTK, PLCG2, PRKCB, MALT1, BCL10, and CARD11) and targets of BCR signaling (MYC and IRF4). In summary, we demonstrated an essential role of USP7 in ABC-DLBCL by organizing an oncogenic epigenetic program via stabilization of WDR5 and MLL2. Targeting USP7 might be a novel and efficient approach to treat patients with ABC-DLBCL and it might be better than targeting individual components such as BTK in BCR signaling.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Peptídeos e Proteínas de Sinalização Intracelular , Linfoma Difuso de Grandes Células B , Proteínas de Neoplasias/metabolismo , Peptidase 7 Específica de Ubiquitina/metabolismo , Linhagem Celular Tumoral , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Lisina/genética , Lisina/metabolismo
9.
Turk J Biol ; 46(6): 426-438, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37529797

RESUMO

Fat mass and obesity-associated protein (FTO) is a demethylase and plays a vital role in various cancers. However, the regulation mechanism of FTO in prostate cancer (PCa) remains unclear. This study aimed to elucidate the mechanism of FTO in PCa. The function and mechanism of FTO-mediated in PCa were determined by gain-of-function assays and RNA-seq. We found that FTO expression in PCa tissues and two PCa cell lines were significantly lower than that in adjacent tissues and normal cell line. PCa cells after overexpression of FTO showed a significant lower in proliferation, migration, and invasion capabilities. RNA-seq displayed that FTO overexpression altered transcriptome landscape in Du145 and PC-3 cells, particularly upregulating EGR2 expression. FTO overexpression induced differential expression genes, including MYLK2, DNA2, CDK, and CDC (6, 7, 20, 25, and 45), which were mainly enriched in adjustment of cell cycle and growth pathways. Furthermore, FTO overexpression significantly reduced the EGR2 methylation level. Arresting the proliferation, migration, and invasion of Du145 cells induced by FTO overexpression was significantly rescued by EGR2 knockdown. FTO overexpression also significantly inhibited tumor growth and promoted EGR2 protein expression. Taken together, FTO suppresses PCa progression by regulating EGR2 methylation. We uncovered a novel regulatory mechanism of FTO in PCa and provide a new potential therapeutic target for PCa.

10.
Cancer Biol Med ; 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34623791

RESUMO

OBJECTIVE: PD-L1 and PD-L2 expression levels determine immune evasion and the therapeutic efficacy of immune checkpoint blockade. The factors that drive inducible PD-L1 expression have been extensively studied, but mechanisms that result in constitutive PD-L1 expression in cancer cells are largely unknown. METHODS: DNA elements were deleted in cells by CRISPR/Cas9-mediated knockout. Protein function was inhibited by chemical inhibitors. Protein levels were examined by Western blot, mRNA levels were examined by real-time RT-PCR, and surface protein expression was determined by cellular immunofluorescence and flow cytometry. Immune evasion was examined by in vitro T cell-mediated killing. RESULTS: We determined the core regions (chr9: 5, 496, 378-5, 499, 663) of a previously identified PD-L1L2-super-enhancer (SE). Through systematic analysis, we found that the E26 transformation-specific (ETS) variant transcription factor (ETV4) bound to this core DNA region but not to DNA surrounding PD-L1L2SE. Genetic knockout of ETV4 dramatically reduced the expressions of both PD-L1 and PD-L2. ETV4 transcription was dependent on ERK activation, and BRAF/TAK1-induced ERK activation was dependent on extracellular signaling from αvß3 integrin, which profoundly affected ETV4 transcription and PD-L1/L2 expression. Genetic silencing or pharmacological inhibition of components of the PD-L1L2-SE-associated pathway rendered cancer cells susceptible to T cell-mediated killing. CONCLUSIONS: We identified a pathway originating from the extracellular matrix that signaled via integrin/BRAF/TAK1/ERK/ETV4 to PD-L1L2-SE to induce PD-L1-mediated immune evasion. These results provided new insights into PD-L1L2-SE activation and pathways associated with immune checkpoint regulation in cancer.

11.
FEBS Open Bio ; 11(11): 2988-3004, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34449964

RESUMO

Clear-cell renal cell carcinoma (ccRCC) is the most prevalent renal malignancy. The pathogenesis of the disease is currently poorly understood, and the prognosis is poor. Therefore, in this study, we focused on exploring and identifying genes and signal transduction pathways that are closely related to ccRCC. Differentially expressed genes (DEGs) were analyzed using the renal cell oncogene expression profiles GSE100666 and GSE68417. DAVID evaluation of gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses was used. We constructed a protein-protein interaction (PPI) network of DEGS using Cytoscape software and analyzed the submodules with the CytoHubba plugin. Finally, we performed western blot, immunohistochemistry, and PCR validation by collecting tissues, and also utilized cells for in vitro functional analysis of ceruloplasmin (CP). In total, 202 DEGs (52 upregulated and 150 downregulated genes) were identified. Upregulated DEGs are significantly rich in angiogenesis, cell adhesion, and response to hypoxia, whereas downregulated DEGs are involved in intracellular pH regulation, excretion, coagulation, and chloride transmembrane transport. We selected the interactions of the top 20 hub genes provided by the PPI network, all of which are involved in important physiological pathways in vivo, such as complement and coagulation cascades. Tissue protein assays demonstrated that renal cancer highly expressed CP, while in vitro experiments showed that CP could promote the invasion of renal cancer cells. Our study suggests that ALB, C3, LOX, HRG, CXCR4, GPC3, SLC12A3, CP, and CASR may be involved in the development of ccRCC, and is expected to provide theoretical support for future studies on the diagnosis and targeted therapy of ccRCC.


Assuntos
Carcinoma de Células Renais/genética , Ceruloplasmina/genética , Biomarcadores Tumorais/genética , Carcinogênese/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/mortalidade , Ceruloplasmina/metabolismo , Biologia Computacional/métodos , Bases de Dados Genéticas , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Ontologia Genética , Redes Reguladoras de Genes/genética , Glipicanas , Humanos , Neoplasias Renais/genética , Oncogenes , Prognóstico , Mapas de Interação de Proteínas/genética , Receptores CXCR4 , Membro 3 da Família 12 de Carreador de Soluto , Taxa de Sobrevida
12.
J Transl Med ; 19(1): 314, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34284793

RESUMO

BACKGROUND: Circular RNA (circRNA) has been demonstrated to participate in cervical cancer development. In this study, we analyzed the role of hsa_circ_0000520 in cervical cancer. METHODS: Fifty-two pairs of cervical cancer and adjacent normal tissue samples were collected, and five human cervical cancer cell lines were obtained followed by the detection of hsa_circ_0000520 expression. Nuclear-cytoplasmic isolation and fluorescence in situ hybridization were performed to analyze the subcellular localization of hsa_circ_0000520 while linear RNA was digested by RNase R. Gain- or loss-of function experiments on hsa_circ_0000520 were performed, followed by detection of cell proliferation and cell cycle by EdU, Cell Counting Kit-8, colony formation assay, and flow cytometry respectively. RESULTS: Hsa_circ_0000520 and cyclin-dependent kinase 2 (CDK2) were highly expressed in cervical cancer tissues. Binding sites between microRNA-1296 (miR-1296) and hsa_circ_0000520 or CDK2 were verified. Antibody to Argonaute 2 (Ago2) could precipitate hsa_circ_0000520, indicating that hsa_circ_0000520 could competitively bind to miR-1296 via Ago2. Silencing hsa_circ_0000520 inhibited cervical cancer cell proliferation and promoted the inhibitory effects of miR-1296 on CDK2, thereby blocking cell cycle progression and promoting apoptosis. CONCLUSION: These results support the premise that targeting hsa_circ_0000520 can be a potential approach to combat cervical cancer.


Assuntos
MicroRNAs , Neoplasias do Colo do Útero , Movimento Celular , Proliferação de Células/genética , Quinase 2 Dependente de Ciclina/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , MicroRNAs/genética , Neoplasias do Colo do Útero/genética
13.
Pathol Res Pract ; 224: 153526, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34273804

RESUMO

Esophageal squamous cell carcinoma (ESCC) is kind of common and aggressive malignant tumors with high incidence and mortality all over the world. Accumulating studies have reported that long non-coding RNAs (lncRNAs) can play a vital regulatory role in human cancers. THAP9 antisense RNA 1 (THAP9-AS1) has been identified as an oncogene in several cancers. But its role in ESCC remains to be studied. In our research, THAP9-AS1 expression in ESCC cell lines was analyzed by real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferation, migration, invasion and apoptosis as well as EMT process were analyzed by 5-Ethynyl-2'-deoxyuridine ( EdU), Transwell, Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL) and western blot experiments. The interplay of THAP9-AS1, miR-335-5p and sphingomyelin synthase 2 (SGMS2) was analyzed by luciferase reporter assay and RNA immunoprecipitation (RIP) assay. We discovered that THAP9-AS1 was highly expressed in ESCC cell lines and that the knockdown of THAP9-AS1 inhibited proliferation, migration, and invasion as well as EMT of ECSS cells but enhanced cell apoptosis. Furthermore, miR-335-5p was proved to be sponged by THAP9-AS1 and its up-regulation could repress ESCC progression. Additionally, SGMS2 was verified to be the target gene of miR-335-5p. In rescue assay, SGMS2 overexpression could offset the suppressive role of THAP9-AS1 depletion on ESCC progression. In short, THAP9-AS1 accelerated cell growth of ESCC through sponging miR-335-5p to regulate SGMS2.


Assuntos
Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , MicroRNAs/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiologia , Movimento Celular/genética , Proliferação de Células/genética , Proliferação de Células/fisiologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Fatores de Transcrição/metabolismo
14.
Int J Clin Exp Pathol ; 13(9): 2342-2347, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042340

RESUMO

Colorectal cancer is one of the most common cancers in the world. This study aimed to investigate the correlation between microRNA-107 (miR-107) expression level and the prognosis in colorectal cancer patients with its clinical significance. 80 cases of cancer tissues and 15 cases of adjacent cancer tissues were collected from colorectal cancer patients treated with surgery from February 2006 to January 2010. The expression of miR-107 was detected by real-time PCR. The correlation between miR-107 expression and clinic pathological factors and survival time of patients was statistically analyzed. The expression level of miR-107 in cancer tissues (0.0213 ± 0.0096) was significantly higher than that in adjacent tissues (0.0355 ± 0.0487). The expressions of miR-107 in patients with different TNM stages, Dukes stages, and lymph node metastasis rates were significantly different (P < 0.05). Cox proportional hazards regression model showed that miR-107 may be an independent factor affecting the prognosis of colorectal cancer patients (P < 0.05). The hazard ratio (HR) was 5.165. MiR-107 is highly expressed in colorectal cancer tissues and is closely related to the pathogenesis, progression, and metastasis of colorectal cancer. MiR-107 is expected to become a new molecular marker to assist the diagnosis, treatment effect and prognosis evaluation of colorectal cancer, and may also become a new target for colorectal cancer biotherapy.

15.
Cancer Cell Int ; 20: 476, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33024414

RESUMO

BACKGROUND: Compelling evidences reported the role of microRNAs (miRNAs) in ovarian cancer. However, little was known regarding the molecular mechanism of miR-367 in ovarian cancer. This study intended to investigate the role and regulatory mechanism of miR-367 in ovarian cancer involving lysophosphatidic acid receptor-1 (LPA1). METHODS: Potentially regulatory miRNAs in ovarian cancer were obtained from bioinformatics analysis. RT-qPCR was used to detect miR-367 expression in both ovarian cancer tissues and relevant adjacent normal tissues. Relationship between miR-367 and LPA1 was predicted by miRNA database and further verified using dual luciferase reporter gene assay and RIP. EdU and Transwell assay were used to measure the proliferation and invasion ability of cells. Moreover, tube formation and chick chorioallantois membrane (CAM) assay were performed to determine angiogenesis of human umbilical vein endothelial cells (HUVECs). Finally, the roles of LPA1 in tumor growth was also studied using nude mice xenograft assay. RESULTS: High expression of LPA1 and low expression of miR-367 were observed in ovarian cancer tissues and cells. Overexpressed miR-367 downregulated LPA1 expression to inhibit proliferation, invasion, and angiogenesis of cancer cells. Low expression of LPA1 suppressed tumor formation and repressed angiogenesis in ovarian in vivo. CONCLUSION: All in all, overexpression of miR-367 downregulated LPA1 expression to inhibit ovarian cancer progression, which provided a target for the cancer treatment.

16.
Aging (Albany NY) ; 12(20): 20445-20456, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33109772

RESUMO

CC-115 is a dual inhibitor of DNA-PKcs and mTOR, both are valuable therapeutic targets for renal cell carcinoma (RCC). Our results showed that CC-115 inhibited survival and proliferation of established RCC cell lines (786-O and A489) and primary human RCC cells. The dual inhibitor induced selective apoptosis activation in RCC cells, as compared to no cytotoxicity nor apoptotic effects toward normal renal epithelial cells. CC-115 inhibited DNA-PKcs and mTORC1/2 activation in RCC cells. It was however ineffective in DNA-PKcs-mTOR double knockout (DKO) 786-O cells. CC-115 induced feedback autophagy activation in RCC cells. Autophagy inhibitors or Beclin-1/Light chain 3 (LC3) silencing potentiated CC-115-induced anti-RCC cell activity. Conversely, ectopic overexpression of Beclin-1 inhibited CC-115-induced cytotoxicity. At last CC-115 oral administration inhibited 786-O subcutaneous xenograft growth in nude mice. Taken together, dual inhibition of DNA-PKcs and mTOR by CC-115 potently inhibited RCC cell growth.


Assuntos
Carcinoma de Células Renais/patologia , Proliferação de Células/efeitos dos fármacos , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Neoplasias Renais/patologia , Pirazinas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Triazóis/farmacologia , Animais , Carcinoma de Células Renais/tratamento farmacológico , Feminino , Humanos , Neoplasias Renais/tratamento farmacológico , Camundongos , Pirazinas/uso terapêutico , Triazóis/uso terapêutico
17.
Mol Carcinog ; 59(6): 661-669, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32339330

RESUMO

Gastrointestinal stromal tumor (GIST) is a common mesenchymal tumor in the gastrointestinal tract. Prostate cancer associated transcript 6 (PCAT6) is a long noncoding RNA (lncRNA) and plays a pivotal role in tumor formation. Present study was designed to explore the function of PCAT6 in GIST. Ki67 staining, colony formation and trypan blue staining assays revealed that PCAT6 boosted GIST cell proliferation but inhibited cell apoptosis. Also, sphere formation assay and Western blot uncovered the promoting role of PCAT6 in GIST stemness. Then, we identified that PCAT6 could activate Wnt/ß-catenin pathway. And the tumor facilitator role of Wnt/ß-catenin pathway was validated in the rescue assays. Next, miR-143-3p was identified as the downstream microRNA of PCAT6. Moreover, miR-143-3p itself served as a tumor suppressor in GIST. Subsequently, peroxiredoxin 5 (PRDX5) was verified as the target of miR-143-3p. PCAT6 promoted GIST cell proliferation and stemness via sponging miR-143-3p to upregulate PRDX5. In a word, PCAT6 promoted GIST cell proliferation and stemness but inhibited cell apoptosis via competing endogenous RNA pattern and activation of Wnt pathway, which might contribute to GIST treatment.


Assuntos
Neoplasias Gastrointestinais/patologia , Tumores do Estroma Gastrointestinal/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Peroxirredoxinas/metabolismo , RNA Longo não Codificante/genética , Via de Sinalização Wnt , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/metabolismo , Tumores do Estroma Gastrointestinal/genética , Tumores do Estroma Gastrointestinal/metabolismo , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Peroxirredoxinas/genética , Prognóstico , Ativação Transcricional , Células Tumorais Cultivadas , beta Catenina/genética , beta Catenina/metabolismo
18.
Oncol Lett ; 19(3): 2326-2338, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32194732

RESUMO

The aim of the present study was to identify potential therapeutic targets that serve crucial roles in the progression of cervical cancer. Clinical data, RNA sequencing (RNAseq)-counts and micro (mi)RNA data regarding cervical squamous cell carcinoma were retrieved from The Cancer Genome Atlas, and analyses were performed using the University of California Santa Cruz database. RNAseq and miRNA data were stratified into 3 groups (according to the patients' age), and genes were re-annotated and preprocessed prior to Mfuzz time clustering analysis. Subsequently, enrichment analyses were performed in order to identify differentially expressed mRNAs (DEmRNAs) and a protein-protein interaction analysis network was constructed. miRNA-gene, miRNA-lncRNA, and long non-coding (lnc)RNA-mRNA pairs were collected and the lncRNA-miRNA-mRNA competing endogenous (ce)RNA network was established. Further enrichment analyses were performed in order to identify crucial mRNAs in the ceRNA network. Finally, survival and drug association analyses were implemented. A total of 269 DEmRNAs [including alcohol dehydrogenase 7 (ADH7), vestigial-like family member 3 (VGLL3) and cytochrome P450, family 26, subfamily B, polypeptide 1 (CYP26B1)], 274 DElncRNAs (including LINC01133) and 16 DEmiRNAs (including miR-3065 and miR-330) were identified. There were 102 lncRNAs, 15 miRNAs, 15 mRNAs and 522 interaction pairs in the ceRNA network. In particular, ADH7 was regulated by miR-3065, and miR-3065 interacted with LINC01133 in the ceRNA network. Furthermore, ADH7 and CYP26B1 were enriched in the retinoic acid metabolic process and the retinol metabolism pathway. ADH7 and VGLL3 were significantly associated with the cervical cancer survival rate. ADH7, VGLL3, CYP26B1, miR-3065, miR-330, miR-499a and LINC01133 play pivotal roles in the progression of cervical cancer in different age groups.

19.
20.
Oncol Rep ; 40(3): 1330-1338, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29956809

RESUMO

Adiponectin is the most abundant adipokine in the tumor microenvironment. The role of this protein in tumor progression, however, remains controversial. In the present study, we aimed to investigate the effects of adiponectin on the abilities of migration and invasion in non­small cell lung carcinoma (NSCLC). Using NSCLC cell lines, we examined the effects of adiponectin on cell migration and invasion using Transwell assays. Expression of epithelial­mesenchymal transition markers was examined via microscopy and western blotting. We also performed a knockdown of Twist, AdipoR1 and AdipoR2 in NSCLC cells with siRNAs. The addition of adiponectin to NSCLC cells inhibited both the migration and invasion abilities. Furthermore, we found that NSCLC cells displayed increased epithelial marker expression and downregulation of mesenchymal marker expression following adiponectin administration. Twist AdipoR1 and AdipoR2 knockdown reversed the inhibitory effects of adiponectin on migration and invasion in NSCLC and epithelial­mesenchymal transition. Exogenous adiponectin significantly impaired the migratory and invasive capacities of NSCLC cells through reversal of EMT, suggesting that adiponectin may be a novel promising therapeutic approach against NSCLC.


Assuntos
Adiponectina/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Movimento Celular , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/patologia , Apoptose , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proliferação de Células , Humanos , Neoplasias Pulmonares/metabolismo , Invasividade Neoplásica , RNA Interferente Pequeno/genética , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...